

1. Introduction

Goal: Multi-Human Mesh Recovery under severe Occlusion

Sports

Social Events

Virtual Reality

Contributions:

- We address the limiting *single person assumption* in top-down methods.
- A novel approach to modify any backbone to predict multiple human meshes using parameter-efficient modulation.
- State-of-the-art on occlusion datasets like 3DPW-PC, OCHuman, CrowdPose.

2. Key Challenges

Top-Down Methods:

Accurate due to scale invariance.

S Fails under occlusion and crowding.

Nikos et. al. Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop, ICCV 2019.

Zhang et. al. 3D Human Pose and Shape with Pyramidal Mesh Alignment Feedback Loop, ICCV 2021. Kocabas et. al. Part Attention Regressor for 3D Human Body Estimation, ICCV 2021.

Bottom-Up Methods:

W Robust to occlusion.

S Lacks precise keypoint localization.

Sun et. al. Monocular, One-stage, Regression of Multiple **3D People**, ICCV, 2021.

Occluded 2D Pose Estimation:

Multi-Human 2D pose predictions. Keypoints only! Lacks 3D reasoning.

Li et. al. CrowdPose Crowded Scenes Pose Estimation and a New Benchmark, CVPR, 2019.

Occluded Human Mesh Recovery

Rawal Khirodkar, Carnegie Mellon University, Max Planck Institute,

3. Context Conditioning

Self-Driving

Local Centermap A

Human Mesh A

Image

Global Centermap

Local Centermap B

Human Mesh B

4. Architecture

Any top-down architecture can be made robust to occlusion! Just start by inserting CoNorm blocks across the backbone.

Input

Shashank Tripathi, Kris Kitani Carnegie Mellon University,

3D Mesh

Occluded Datasets

Method	3DPW-PC (↓)	OCHuman (↑)	CrowdPose (↑)	General Datasets		
				Method	3DPW (↓)	COCO (↑)
SPIN	132.7	11.1	14.8 17.4			
				SPIN	94.7	11.3
PyMaF	126.7	14.3		CRMH	105.9	12.6
ROMP	119 7	15.6	18.9			
				PyMaF	92.8	13.8
OCHMR	117.5 (-2.2)	24.8 (+6.8)	21.4 (+2.5)			
				ROMP	91.3	14.7
SPIN (gt bb)	128.4	16.9	17.2			
OCHMR (gt bb)	112.2 (-16.2)	37.7 (+20.8)	23.6 (+6.4)		89.7 (-1.6)	15.3 (+0.6)
					I	I

PR JUNE NEW ORLEANS 19-24 2022 LOUISIANA

Comparison to State-of-the-Art

Conoral Datacate

Qualitative Results

