

Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation

Rawal Khirodkar¹, ¹Carnegie Mellon University,

Input

Visesh Chari², Amit Agrawal³, ²Waymo, ³Amazon,

Ambrish Tyagi⁴ ⁴Cruise

https://rawalkhirodkar.github.io/mipnet/

1. Introduction

Goal: Multi-Person 2D Pose Estimation under severe Occlusion

Social Events

Virtual Reality

Self-Driving

Contributions:

Sports

- We address the limiting single person assumption in top-down methods.
- A novel approach to modify any backbone to predict multiple pose instances using parameter efficient feature modulation.
- MIPNet is state-of-the-art on occlusion datasets, OCHuman & CrowdPose.

2. Key Challenges

Top-Down Methods:

Accurate due to scale invariance.

Sun et. al. Deep High-Resolution Representation Learning for **Human Pose Estimation**, CVPR 2019.

Newell et. al. Stacked Hourglass Networks for Human Pose Estimation, ECCV 2016.

Bottom-Up Methods:

Robust to occlusion.

X Lacks precise keypoint localization.

Cao et. al. OpenPose: Realtime Multi-Person Pose Estimation using Part Affinity Fields, TPAMI, 2019.

Occluded Pose Estimation:

Multi-instance predictions.

Parameter inefficient/Three stages.

Li et. al. CrowdPose Crowded Scenes Pose Estimation and a New Benchmark, CVPR, 2019.

3. Multi-Instance Pose Prediction

MIPNet takes two inputs to predict pose - the rgb bounding box image, x and a scalar instance selector, λ . $\lambda \in [0, N-1]$ where N is a hyper-parameter.

Multi-Instance Modulation Block

Inference

Losses

n = ground-truth poses in image and MSE(...) isthe weighted heatmap pose loss.

 $\int MSE(y_i, P(x, \lambda = i)), i < \min(n, N)$ MSE $(y_0, P(x, \lambda = i))$, otherwise

4. Architecture

Any top-down architecture can be converted to MIPNet by inserting MIMB blocks across the backbone. We insert 5 blocks in HRNet backbone after stage 3 and stage 4 as shown.

Comparison to State-of-the-Art

1ethod	COCO (AP)	CrowdPose (AP)	OCHuman (AP)
/laskRCNN	64.8	57.2	20.2
lphaPose	70.1	61.0	21.1
PEC-Net	73.9	70.6	29.1
BL	73.7	60.8	24.1
IRNet	75.5	69.3	37.2
/IIPNet	75.7 (+0.2)	70.0 (+0.7)	42.5 (+5.3)
IRNet (gt bb)	78.1	72.8	65.0
/IIPNet (gt bb)	78.8 (+0.7)	73.7 (+0.9)	74.1 (+9.1)

Qualitative Results

