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ABSTRACT

The project focuses on applying state-of-the-art face recognition methods to a specific setting of
classroom surveillance footage. The goal is to monitor proceedings in the classroom such as quality
of instruction imparted by teachers, student attendance, teacher identity verification. We look into
state-of-the-art methods based on deep learning for tasks like face detection and face recognition
which are highly customised to work for our particular kind of data-set. An LSTM based approach
for people detection in frames is discussed which forms the baseline for face recognition module of
this project. Two famous deep learning models FaceNet and VGG-Face are used as face recognition
methods on our dataset.
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1. Introduction

1.1 Overview
The objective of this project is to provide Ministry of Rural Development (MoRD) with a user-
friendly video analytics platform to analyse the classroom surveillance footage collected from class
rooms held under the rural development initiative. The kind of assessment which this system should
provide falls under majorly two categories.

• Quantitative Assessment: This paradigm involves extracting straightforward quantitative
information from the videos. Specifically, we aim to solve three problems falling under this
problem.

– Classroom Attendance Estimation: Estimates the number of students attending the
classes.

– Teaching Duration Estimation: Estimates the time for which teacher actually taught in
the classroom.

– Trainer Identity Verification: Verifies whether the person instructing the class is actually
the teacher on role.

• Qualitative Assessment: This paradigm involves assessment of quality of instruction im-
parted during teaching. For now we aim to solve two problems belonging to this category.

– Measuring interaction between teacher and students: Quantify the level of interaction
between the teacher and the students during the class.

– Student attentiveness profiling: Provides statistical data which correlates with the atten-
tiveness shown by a student in the classroom.

Initial phase of our project majorly focuses on providing solutions to all problems falling under
the Quantitative Assessment category. This project specifically provides a solution for "Trainer
Identity Verification" and later extends the solution to "Teaching Duration estimation".
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Figure 1.1: Camera Angle: Trainer Facing Figure 1.2: Camera Angle: Trainer Facing

Figure 1.3: Camera Angle: Student Facing Figure 1.4: Camera Angle: Student Facing

1.2 MoRD Data
The data-set consists of footage from cameras installed in classrooms in the training center of
Ministry of Rural Development (MoRD). The teaching job at these training centers are outsourced
to private organisation who are paid according to number of students attending the classes. This
has given rise to malpractices like forging the attendance count, poor-quality of training to students.
Thus, our system would act as an automated monitor to avoid such misuse of resources.

The data set majorly consists of three types of camera angle:
• Trainer facing: Figure 1.1 and Figure 1.2 are examples of such classrooms. This camera

angle is desirable for Trainer Identity Verification.
• Student facing: Figure 1.3 and Figure 1.4 are examples of such classrooms. This camera

angle is desirable for Student Attendance Estimation.

Clearly frontal face exposure is necessary for face recognition. This is the recommended camera
setting which is used to test our module.

1.3 Challenges
• These videos typically contain a lot of faces in each frame, thus, making the task of face

recognition challenging.
• Temporary occlusion of faces occur in active classroom.
• The trainer (very understandably) moves and turns in the classroom. Thus, hindering the facial

feature capture by the cameras.
• The camera orientation is not always ideal.
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Figure 1.5: Algorithm

• The footages are pixelated due to use of low resolution cameras.

1.4 Approach
In this section we will formally discuss the problem and the approach adapted to solve it.

1.4.1 Input and Output
Let us first clearly specify input and output for this project.
• Input: Video and Query Image of the face of the trainer (or anything other person whose

identity is to be verified).
• Output: Annotated video identifying the identity (if present) represented by the query image.

1.4.2 Algorithm
Deep Neural networks are used to embed an input face image to feature space of faces.

The algorithm is as follows:
• Extract an embedding from the query face image using the neural network
• For each frame in the video:

– Detect faces in the frame.
– For each detected face, extract an embedding from the neural network.
– Thus we have mapped every face present in the frame along with the query image into a

feature space.
– Further, use nearest-neighbour search using any kind of similarity measure (we use

Euclidean norm) between these faces and the query face.

Figure 1.5 represents the algorithm pictorially.



2. Face Detection

Face detection in videos is the first step towards our goal to achieve video summarisation. This
boils down to doing object detection in an image where your object is a human face. Most common
methods to do object detection are feature based where you look for regions in the image whose
features closely resemble features of the object being detected.

We initially looked into widely used feature based techniques like Histogram of Oriented
Gradient (HOG) and Haar-Cascades for face detection.

2.1 Histogram of Oriented Gradients
The histogram of oriented gradients (HOG) is a feature descriptor used in computer vision and
image processing for the purpose of object detection. The method is credited to Navneet Dalal and
Bill Triggs, researchers for the French National Institute for Research in Computer Science and
Automation (INRIA) when they presented it in CVPR (2015).

2.1.1 Description
The method employs sliding window approach to detect faces in the image. Consider an image patch
from the window, at each pixel in the image patch, the intensity gradient and its direction is computed.
Now a histogram of gradients is built using gradient vectors at each pixel. The contribution of each
gradient to the corresponding bin in the histogram is directly proportional to gradient’s magnitude.
After normalising the histogram, we get a feature vector extracted from the image patch whose
dimensionality is equal to the number of bins in the histogram. Using these feature vectors, a
binary classifier (most popularly Support Vector Machine) is trained to classify the image patch as
containing a face or not.

2.1.2 Results
A pre-trained classifier from OpenCV was used to test the performance of HOG feature based face
detection on our data set. Figure 2.2 shows the result on our dataset.
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Figure 2.1: Frontal Face detection using HOG

The number of false positives are significant and all the detections are wrong. Clearly the results
were not encouraging enough.

Following are the reasons behind the failure of HOG feature based face detector:
• The facial features are not clearly visible
• The training data on which the classifier is trained could be significantly different from our

data.

Thus, training the model on our data set would a plausible way to fix the problem. But again
this approach restricts the domain of videos (videos similar to training data) where the model is
applicable. The inability of this approach to generalize to wide array of setting (intensity and pose
variation) strengthened our decision to drop it.

2.2 Haar-Cascades
This machine learning based approach to do object detection uses a cascade function trained on a lot
of positive and negative images. The method was proposed by Paul Viola and Michael Jones in their
paper published in 2001. [2]

2.2.1 Description
Again, this method employs a sliding window approach where a binary classifier (trained and
boosted) is used whether the face is present in the image patch represented by the window or not.
The features (refer figure 2.2) used in the training of the classifier are called as the Haar features
which are obtained by subtraction of sum of pixel values in rectangular patches in the image. The
number of resulting features can be extremely large. Therefore, Adaptive Boosting (Adaboost) is
used to select only relevant features.

A weak classifier is trained corresponding to each Haar feature and using adaptive boosting the
final classifier (strong classfier) is a weighted sum of the selected (minimum error) weak classifier.
To increase efficiency instead of applying all selected weak classifiers on a particular image patch
at once, the classifiers are grouped together forming various stages. The initial stages consists of
few weak classifiers whose each representing a very effective feature vector. The subsequent stages
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Figure 2.2: Haar features

Figure 2.3: Face detection using Haar-Cascades Figure 2.4: Head detection using Haar-Cascades

of the strong classifier are only applied when the image patch is not discarded by the initial stages.
Thus the stages of the classifier are used in a cascaded manner.

2.2.2 Results
A pre-trained classifier from OpenCV was used to test the performance of Haar feature based face
detection on our data set. Figure 2.3 shows the result on our dataset.The number of false positives
were significantly less than HOG based detector. However, many faces (very understandably) were
not detected due very less frontal face exposure.

Less frontal face exposure is a very major problem with our dataset. As a result we decided to
shift to Head Detection instead of a Face Detection majorly because head detectors would be robust
enough to detect low resolution (blurred) faces as a "head" is rather a simple object to detect than a
"face". We compared HOG and Haar based head detectors, and again Haar-cascades seemed to do
better than HOG based detectors. Figure 2.4 shows result of Haar-Cascade based Head Detector.The
number of false positives increased, but this is not a major issue as face recognition would reject
objects not similar to faces using a nearest neighbour search.
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Figure 2.5: Long Short Term Memory network architecture

2.3 Long Short Term Memory Networks
Haar-cascades didn’t prove to be effective on our dataset majorly because the videos are quite
crowded and you have a lot of heads to detect. In search of an effective method which works in
crowded scenes, we used the method proposed in "End-to-end people detection in crowded scenes"
which uses Long Short Term Memory (LSTM) networks for detecting people.

2.3.1 Description
In this method, first the image is encoded into descriptors using a Convolutional Neural Network
(CNN). This descriptors are further decoded into a bounding boxes corresponding to head detection
in the image. A chain of LSTM units is used where each LSTM unit corresponds to one head
detection (shown in figure 2.5). For more details about the model architecture and its result on our
dataset please refer to my colleague Unmesh’s undergradute thesis.

2.3.2 Results
Figure 2.6 and Figure 2.7 depict results of LSTM based head detector on our data-set. Clearly this
approach performs better than our previous approaches. The model was able to detect nearly 60-70%
heads in a frame. The number of detections can be increased using a lower confidence threshold for
a valid detection. However, this can very likely result in increase in number of false positive. We did
several experiments to tune this hyper-parameter (confidence threshold) to maintain a sweet spot
between precision and recall. The project uses LSTM based people detection module to do face
recognition.
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Figure 2.6: Head detection using LSTM networks

Figure 2.7: Head detection using LSTM networks



3. Face Recognition

This section discusses about the the face recognition module which is also the last stage of the
algorithm. Eigenface along with Principal Component Analysis (PCA) [4] is the standard approach
used in computer vision for face recognition. However, recent approaches using Deep learning have
performed better on benchmark datasets (eg. Labelled Faces in Wild [5], YouTube face database [6])
for face verification.Deep learning methods have also shown Illumination and Pose invariance
which is a characteristic of our dataset.

We implemented two deep model based approaches (top ranked on LFW dataset) mentioned in
the following papers on our dataset:
• "FaceNet: A Unified Embedding for Face Recognition and Clustering", Computer Vision and

Pattern Recognition 2015 [7] - by Google
• "VGG-Face: Deep Face Recognition", British Machine Vision Conference, 2015 [8] - by

Visual Geometry Group, Oxford

3.1 FaceNet
The method is based on learning an Euclidean embedding per image using a deep convolutional
network. The network is trained such that the squared L2 distances in the embedding space directly
correspond to face similarity:faces of the same person have small distances and faces of distinct
people have large distances.

3.1.1 Model Structure
The training of the network consists of a batch of image given as input to the convolutional network.
The deep network embeds the images into a feature space (i.e each image is now represented by a
vector of real numbers). This embedding is further L2 normalized and the resultant vector is used
to determine the loss over the training data. The loss used by FaceNet is called as Triplet Loss
(discussed in next section) which is used to do back-propagation on the convolutional network. This
whole methodology is pictorially represented by Figure 3.1



3.1 FaceNet 15

Figure 3.1: Pictorial Representation of FaceNet

Figure 3.2: Minimize distance between anchor and positive, maximize distance between anchor and
negative

3.1.2 Triplet Loss
The loss function used by FaceNet is one of key reasons why FaceNet performs so well. Firstly, the
loss function directly focuses on improving the feature representation. This is not similar to the case
when general deep models are trained as a multi-class classifier and the feature representation is
extracted from one of the in-between layer of the network.

Following is the description of the Triplet Loss.
• Let x be an image, and its embedding in d-dimensional Euclidean space is represented by

f (x) ∈ Rd .
• Additionally, the embedding is contrained to live on the d-dimensional hypersphere, i.e
‖ f (x)‖2 = 1.
• The loss function is based on a triplet. The ith triplet is represented as (xi

a,xi
p,xi

n) where xi
a,

xi
p, xi

n are called as anchor, positive and negative image respectively.
• The loss function ensures that an image xi

a (anchor) of a specific person is closer to all other
images xi

p (positive) of the same person than it is to any image xi
n (negative) of any other

person. Figure 3.2 shows this notion pictorially.
• Thus we want,

‖xi
a− xi

p‖2 +α < ‖xi
a− xi

n‖2, ∀ (xi
a,xi

p,xi
n) ∈ τ

where α is margin enforced between positive and negative pairs and τ is set of all possible
triplets in training set with cardinality N.
• Therefore the loss over a batch of input images is defined as

Loss =
N
∑
i
[‖ f (xi

a)− f (xi
p)‖2−‖ f (xi

a)− f (xi
n)‖2 +α] .
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• Not all possible triplets are used for training as many would be easily satisfied and would thus
result in slower convergence (as they would still be passed through the network).
• α is set to 0.2 which is found after cross validation.

3.1.3 Triplet Selection
As mentioned earlier only selected triplets are actually used in the training procedure. We further
look into the exact way to choose triplets from the training data which are used to compute the triplet
loss. Let us first define two essential terms Hard Positive and Hard Negative.

• Hard Positive (xi
p) : Given an anchor xi

a,

xi
p = argmaxxi p‖ f (xi

a)− f (xi
p)‖2

• Hard Negative (xi
n) : Given an anchor xi

a,

xi
n = argminxin‖ f (xi

a)− f (xi
n)‖2

Therefore (anchor image, hard positive, hard negative) thus constitutes a challenging triplet
and is used for training.

It is unfeasible to compute argmax and argmin across the whole training data after each back-
propagation step.Thus triplets are generated from a large mini batch of size 1800 images.To obtain a
meaningful representation of anchor-positive distances, it needs to be ensured that a minimal number
of images of any one identity is present in each mini-batch. Implementation uses 40 faces per identity
per mini-batch.

3.1.4 Architecture
The CNN (Convolutional Neural Network) used in implementation uses rectified linear units as the
non-linear activation. Overall the model has 11 Convolutional Layers and 3 Fully connected layers
results in an overall depth of 14 layers. The model is inspired from the model used by Zeiler &
Fergus [9].

The model uses 1 x 1 x d as suggested in [10] between the convolutional layers. It has a total
of 140 million parameters and requires around 1.6 billion Floating Point Operations pe Second
(FLOPS) per image. Table 3.1 depicts the exact architecture of the CNN used in FaceNet.

Input/Output size = rows x cols x #filters
kernel = rows x cols, stride

3.1.5 Implementation Details
The CNN is trained using Stochastic Gradient Descent (SGD) with standard backprop and AdaGrad
on a training set of 200 million images containing 8 million identities. The learning rate is decreased
with time and has a starting value of 0.05. The model was initialised from random and trained on a
CPU cluster for 2000 hours.

Usual approach in deep learning based methods for face recognition use a classification layer
trained over a set of known face identities and then take an intermediate bottle-neck layer as a
representation which is used to generalize recognition beyond the set of identities used in training.
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Layer Size-In Size-Out Kernel Parameters
conv1 220x220x3 110x110x64 7x7x3,2 9K
pool1 110x110x64 55x55x64 3x3x64,2 0

conv2a 55x55x64 55x55x64 1x1x64,1 4K
conv2 55x55x64 55x55x192 3x3x64,1 111K
pool2 55x55x192 28x28x192 3x3x192,2 0

conv3a 28x28x192 28x28x192 1x1x192,1 37K
conv3 28x28x192 28x28x384 3x3x192,1 664K
pool3 28x28x384 14x14x384 3x3x384,2 0

conv4a 14x14x384 14x14x384 1x1x384,1 148K
conv4 14x14x384 14x14x256 3x3x384,1 885K
conv5a 14x14x256 14x14x256 1x1x256,1 66K
conv5 14x14x256 14x14x256 3x3x256,1 590K
conv6a 14x14x256 14x14x256 1x1x256,1 66K
conv6 14x14x256 14x14x256 3x3x256,1 590K
pool4 14x14x256 7x7x256 3x3x256,2 0

fc1 7x7x256 1x32x128 ReLU 103M
fc2 1x32x128 1x32x128 ReLU 34M
fc3 1x32x128 1x1x128 524K
L2 1x1x128 1x1x128 0

Table 3.1: Deep Convolutional Network Architecture

For example, DeepFace (Facebook) [11] is trained using a multi-class classifier on 4.4 million images
with 4,030 identities (classes). The feature representation from the model in case of DeepFace is
extracted from second last layer (layer before the softmax layer).

There are two major downsides to this approach:

• Indirectness: You are learning the embedding indirectly by learning a multi-class classifier.
In this case, one has to hope that bottleneck representation will generalize well to new faces.
Thus we severely restrict the scope of the faces were the model performs well.

• Inefficiency: Bottleneck layer representation size per face is usually very large (thousands
in dimension eg: DeepFace generates a 4096 embedding of an input face). The bottleneck
representations are large in dimension majorly because the model heavily depends on the
output of this layer. Thus a very discriminative model would need a very big feature vector to
actually capture all of the information from the input. This gives rise of memory issues and
increases the number of floating point operations during training. Thus, turning out to be very
inefficient.

FaceNet avoids both of this difficulties by directly training its output to be a compact 128
dimensional embedding using a triplet based loss function.
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Figure 3.3: Query Image Figure 3.4: Correct Recognition, (d2 = 0.44)

3.1.6 Results
The query image of the trainer was taken itself from the video due to lack of database of images on
the trainer. However, to ensure pose discrimination the query was cropped from a different instance
of the video (where the trainer sits) and was analysed on different setting of the video.

Observations:
• Figure 3.4, Figure 3.5, Figure 3.7 shows the instance where the model was correctly able to

recognize the trainer in the frame (marked in green bounding box). Other faces detected by
LSTM face detector are shown in red bouding box. d2 here depicts the Euclidean distance
squared between the embedding of the query image and its closest matching face in the frame.
• Figure 3.6 shows the case when the Head detector was not able to capture the trainer’s face

which led to a wrong recognition.
• Figure 3.8 shows the case when the model wrongly predicted the trainer even after trainer’s

face was detected by the LSTM model. This happened due to sudden change in posture in the
video when the trainer was teaching.
• An interesting observation here is that for every correct recognition the d2 value is significantly

less than when there was a failed recognition.
• This fact can be used to avoid failed detection like in figure 3.8 by introducing a hyperparameter

which represents the minimum d2 value necessary to deem the detection as similar to the query
image. (d2 equal to 0.5 clearly works in this example).
• By experiments, it was observed that this hyperparameter depends on the background, intensity

of the image i.e the overall background setting of the image. Thus an absolute hyperparameter
suitable for one video may not give good results on other videos.
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Figure 3.5: Correct Recognition, (d2 = 0.43)
Figure 3.6: Missing Head, failed recognition,
(d2 = 1.27)

Figure 3.7: Correct Recognition, (d2 = 0.33)
Figure 3.8: Failed recognition despite of head
detection, (d2 = 0.71)
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Figure 3.9: VGG Face Architecture

3.2 VGG-Face
After great results from FaceNet on our dataset we decided to try out deep network by Visual
Geometry Group, Oxford which beats FaceNet on the benchmark dataset of YouTube Faces [6].

Here are the quantitative results from [8]:
• Labelled Faced in the Wild (LFW) [5]:

– FaceNet: 99.63%
– VGG-Face: 98.95%

• YouTube Face Database (YTF) [6]:
– FaceNet: 95.1%
– VGG-Face: 97.3%

The interesting fact however is that the training data used to train VGG Face is significantly
smaller than the one used for training FaceNet. Here is a quick comparison:

• FaceNet Training Data: 8 million identities, 200 million images
• VGG Face Training Data: 2,662 identities, 2.6 million images

3.2.1 Architecture
Please refer to figure 3.9 for the exact architecture details. The Convolutional Network comprises of
11 blocks, each containing a linear operator followed by one or more non-linearities such as ReLU
and Max Pooling. The first 8 blocks are Convolutional and last 3 blocks are Fully Connected (FC).
The use of softmax layer is for the multi-class classification problem. All convolutional layers are
followed by a rectification layer (ReLU). The final embedding is extracted from the second last fully
connected layer. Thus, giving us a vector of 4096 dimension. Overall we have 13 convolutional
layers and 3 fully connected layers.

Total Depth = 16 layers.

Following notation is followed in figure 3.9:
• support = dimension of kernel
• filt dim = depth of kernel
• num filts = output depth from the layer
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3.2.2 Training
Training follows the usual approach of bootstrapping the network initially using a Multi-class classi-
fier and then fine tuning the embeddings directly using a loss function which directly incorporates
the embedding in the loss. Bootstrapping stage is extremely necessary if you don’t have a lot of
training data. Muli-class classification stage directs the model in the "correct direction" quickly
as learning a classifier is a relatively simpler task than learning a very discriminative embedding
directly. This was not the case with FaceNet as it had the privilege of a lot of training data.

The training for VGG Face is done in two stages:
• Stage 1: Learning a Face Classifier
• Stage 2: Learning a Face embedding using a triplet loss.

3.2.3 Stage 1: Learning a Face Classifier
Initially the network is bootstrapped by considering the problem of recognising N = 2,662 unique
individuals over 2.6 million images (Multi-class classification). The need of this step (as mentioned
earlier) is due to the small scale of training data set. Loss function is the standard cross-entropy loss
function.
Loss = -log(pk), where k is the index of true label and pk is the softmax probability.

3.2.4 Stage 2: Learning a Face embedding using a triplet loss
During this stage of training, the network is further tuned using the triplet loss (Refer Section
3.1.2). The feature vector used in the loss function is the output of the second last fully connected
(bottleneck) layer of 4096 dimensions. Triplet Selection (Refer Section 3.1.3) over a mini-batch is
done as before. Thus, we have the loss function as follows:

L =
N
∑
i
[‖ f (xi

a)− f (xi
p)‖2−‖ f (xi

a)− f (xi
n)‖2 +α]

Note: The notation is similar to the one followed in Section 3.1

3.2.5 Implementation Details
• The input to the network is a face image of 224x224 with average face image (computed from

the training set) subtracted - this is critical for the stability of optimisation algorithm.
• Data augmentation was done by flipping the image left to right with 50% probability.
• However, no color channel augmentation is done to preserve rawness of the training data.
• 50% Dropout applied after the first two FC layers.
• 2D alignment on test images showed increase in performance. However, doing 2D alignment

on training data did not provide any additional boost.
• The weights of the filters in the CNN are initialised by random sampling from a Gaussian

distribution with zero mean and 10−2 standard deviation.
• Biases were initialised to zero.
• For learning the embeddings using triplet loss, the network is frozen except the last fully-

connected layer which implements the discriminative projection.
• Stage 2 of training is executed for 10 epochs using Stochastic Gradient Descent with a fixed

learning rate of 0.25.
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Figure 3.10: Query Image
Figure 3.11: Correct Recognition, (d2 =
5560.25)

Figure 3.12: Missed head detection, (d2 =
10762.25) Figure 3.13: Missed head detection, (d2 = 9218)

3.2.6 Results
The query image of the trainer was taken itself from the video due to lack of database of images on
the trainer. For the sake of variety, we analyse two different videos here.

Observations:
• Figure 3.10 and figure 3.14 are the two query images.
• Figure 3.11 shows the instance where the model was correctly able to recognize the trainer in

the frame (marked in green bounding box).
• Figure 3.12, figure 3.15 shows the case when the Head detector was not able to capture the

trainer’s face which led to a wrong recognition.
• Figure 3.16 shows the case when the model wrongly predicted the trainer even after trainer’s

face was detected by the LSTM model. The overall performance of VGG was considerably
poor in comparison to FaceNet on our dataset.
• Again for every correct recognition the d2 value is significantly less than when there was a

failed recognition. See figure 3.11, figure 3.12 and figure 3.13
Therefore, as a step towards building a complete product for MoRD we decided to use FaceNet

for now as our face recognition module.
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Figure 3.14: Query Image
Figure 3.15: Failed face detection due to occlu-
sion, (d2 = 5560.25)

Figure 3.16: Failed face detection , (d2 = 4192.35)



4. Further Work

We looked at two deep learning model each enjoying a different advantage architecture wise namely
FaceNet and VGG-Face. FaceNet seems to perform significantly well on our dataset. Most of the
wrong face recognitions were due to the fact that the trainer’s face was not detected by the Face
Detection module. We plan to train the LSTM Face detection model on our data set for better results
which will also result in significant improvement with face recognition.

The hyperparameter (minimum distance threshold) introduced in Section 3.1.6 depends on the
environment setting. Therefore a plausible method to tackle this problem would be to do Transactive
Learning [12] which essentially learns these parameters online also tuning the deep model on the
fly.
The face recognition modules are susceptible to give wrong recognitions in case when the there is a
sudden change in posture of the trainer. Also, use of convolutional network forward propagation for
each detected face in a frame is computationally expensive. As we are looking at videos as input
and there is not much change across two consecutive images we have decided to look into tracking
techniques like Correlation Tracker [15] to do tracking of correct face recognitions for a certain
number of frames and then reset the tracks again with doing forward propagation using the deep
networks.
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